

Institut de Recherche de l'Ecole Navale

BCRM BrestCC 600 F29240 BREST Cedex 9

FRANCE

Department of Mechanical and Energy Engineering

French Naval Academy

Located in Brittany, Western France

French Naval Academy

Purpose

- To provide the high level scientific training of the French Navy cadets (~100 per year) and of Master degree civilian students
- To develop high level open basic researches for maritime applications
- Staff: ~ 65 people
 - 20 Academics, 25 PhD students, 20 technical and administrative staff
- **Three Research Department**

- **Underwater Acoustics and Signal Processing**
- **Mechanical and Energy Engineering**

Department of Mechanical and Energy Engineering

Mechanical and Energy Engineering Dept

- 10 Academics, ~10 PhD students
- Expertise: fluid mechanics, mechanics and electrical engineering

- Two Main Axes of research
 - Axe 1: Hydrodynamics for Naval Applications
 - Basic researches on hydrodynamics: Flow over lifting and bluff bodies, cavitation, turbulence, Fluid— Structure Interaction, Hydrodynamics instabilities, Experimentation, Computation.

- Axe 2 : Energy conversion
 - Optimal design of electrical machines for naval propulsion and Marine Renewable Energy harnessing
 - Marine Renewable Energy: Marine Current Turbine
 - RIM-Driven Project : unconventional structure of integrated PM generator and turbine
 - SHIVA Project : Active variable pitch cross flow current turbines

SHIVA PROJECT

Synoptic of activities

Topics

Hydrodynamics Complex flow, Cavitation, Fluid Structure Interaction

Naval Engineering

Axe 2

Energy Conversion

Modelization and Conception of
electromechanical
System
Marine Renewable Energy

Basic research

Applications

Cavitation tunnel

test section : $0.2x0.2x \ 1 \ m^3$, $60m^3$ fresh water Velocity : $3 - 12 \ m/s$, Pressure : $0.1 - 3 \ bars$

Main Instrumentation

2D LDV, 2D PIV strain gauge Balance Laser Vibrometer High speed camera

Diphasic Taylor-Couette flow

To study flow instabilities and transition to turbulence in diphasic flow One of the largest device in the world

Hydrodynamics

- Basic research on complex flows developing on lifting surfaces and bluff bodies in water:
 - To understand complex flows:
 cavitation, turbulence, high
 Reynolds number flow, boundary
 layer, vortex flow, wake, flow
 instabilities,...
 - Experimental and numerical studies

Unstable cavitating flow on a lifting surface, top view

Cavitating wake downstream a cylinder, side view

Cavitation

Unsteady Cavitating Flow on hydrofoil

Experiment

Computation

- Basic research on physics of coupling between flow and adjacent flexible structures:
 - Fluid-structure interaction is where fluid flow exerts pressure on a solid structure causing it to deform such that it causes :

- propeller blade, sails...
- Flow Induced Vibration
- Live time of structure
- Numerical Coupling Strategy?
- Experimental and numerical studies

Cavitation Induced Vibration

Flow Structure Interaction applied to Sailing

Integrated Design of Marine Propeller

- Basic research on milling strategies for propeller blade manufacturing :
 - Surface roughness, ridge orientation...
 - Impact on manufacturing cost and performances of propeller
 - Experimental and numerical studies

Cavitation on longitudinal ridges on a lifting surface

Electromechanical Conversion

- Basic and applied research on innovative propulsion or energy conversion systems based on electrical machines and drives :
 - Conception and Optimization of unconventional electrical machines:
 - multiphase machine, Pods, RIM ...
 - Marine Renewable Energy Converters:
 - marine currents ...
 - Coupled physics : hydrodynamics and electrical engineering
 - Experimental and numerical studies

The RIM Marine Curent Turbine

Electromechanical Conversion

Active Pitch Control Vertical Marine Current Turbine : SHIVA Project

Experimental devices

- Main laboratory devices :
 - Hydrodynamic tunnel
 - Instrumentation : 2D LDV, 2D PIV, balance, vibration systems...
 - 5-axes high speed milling machine (since 2004)
 - Experimental test device for multiphase machine (2005)
 - Marine Current Turbines (RIM, SHIVA)

60 m³ water, test section : 0.2x0.2x 1 m³, Velocity : 3 – 15 m/s, Pressure : 0.1– 3 bars

Naval academy website: http://www.ecole-navale.fr/

Next event:

http://www.ecole-navale.fr/Journee-Sciences-Navales-2012.html

Research Institute Website:

http://www.ecole-navale.fr/-RECHERCHE-.html

Contact

jacques-andre.astolfi@ecole-navale.fr

Sailing at the Naval Academy

Cadets at the Naval Academy

Welcome to the Naval Academy

